jueves, 3 de noviembre de 2011

El Big Bang y la Expansión del Universo.

El significado de la expansión
La expansión no es más que el incremento con el tiempo de la distancia entre cualquier par de galaxias lejanas. Se suele utilizar para representar este hecho la analogía de un globo donde hemos pintado una serie de puntos a modo de galaxias. La goma podría representar al espacio y a medida que inflamos el globo los puntos se alejan unos de otros.Astronomía.net.(1996)
Pero se debe tener cuidado en llevar esta analogía demasiado lejos. Algunas personas plantean inmediatamente por qué no todos los objetos se están expandiendo: por ejemplo ¿por qué no aumentar la distancia entre el sol y la tierra?. La respuesta corta es que los sistemas unidos bajo la fuerza gravitatoria no están en expansión debido a que el efecto gravitatorio local domina sobre la tendencia a la expansión. Por ejemplo, la galaxia Andrómeda, que se encuentra a unos dos millones de años luz de distancia, está unida gravitacionalmente al grupo local de galaxias del que la Vía Lactea forma parte. Andrómeda no se está alejando de nosotros, sino que de hecho se acerca a una velocidad de unos 100 km/s (con algunas posiblidades de colisión dentro de unos 3 mil millones de años). 
La definición de expansión del universo es operacionalmente muy concreta y precisa: "el universo se expande en el sentido de que dos galaxias distantes se alejan con una velocidad de la forma v = dD/dt = H D, donde D es la distancia entre las galaxias y H la constante de Hubble en cualquier instante de la vida del universo". Aquí hay varias cuestiones fundamentales que aclarar, Astronomía.net. (1996).



Origen del término “Big Bang”


La expresión Big Bang proviene  del astrofísico inglés Fred Hoyle, uno de los detractores de esta teoría y, a su vez, uno de los principales defensores de la teoría del estado estacionario, quien  dijo, para mofarse, "que el modelo descrito era sólo un big bang (gran explosión)". No obstante, hay que tener en cuenta que en el inicio del Universo ni hubo explosión ni fue grande, pues en rigor surgió de una "singularidad" infinitamente pequeña, seguida de la expansión del propio espacio.
La idea central del Big Bang es que la teoría de la relatividad general puede combinarse con las observaciones de isotropía y hogeneidad a gran escala de la distribución de galaxias y los cambios de posición entre ellas, permitiendo extrapolar las condiciones del Universo antes o después en el tiempo.
Una consecuencia de todos los modelos de Big Bang es que, en el pasado, el Universo tenía una temperatura  más alta y mayor densidad y, por tanto, las condiciones del Universo actual son muy diferentes de las condiciones del Universo pasado. A partir de este modelo, George Gamow pudo predecir que debería de haber evidencias de un fenómeno que más tarde sería bautizado como radiación de fondo de microondas, Wikipedia.(2011)

Modelos estáticos y de expansión del Universo
En 1917 Albert Einstein propuso un modelo del Universo basado en su nueva teoría de la relatividad general.
Consideraba el tiempo como una cuarta dimensión y demostró que la gravitación era equivalente a una curvatura espacio−tiempo cuatridimensional resultante. Su teoría indicaba que el Universo no era estático, sino que debía expandirse o contraerse. La expansión del Universo todavía no había sido descubierta, por lo que Einstein planteó la existencia de una fuerza de repulsión entre las galaxias que compensaba la fuerza gravitatoria de atracción. Esto le llevó a introducir una `constante cosmológica' en sus ecuaciones; el resultado era un universo estático. Sin embargo, desaprovechó la oportunidad de predecir la expansión del Universo, lo que Einstein calificaría como "el mayor error de mi vida". Rincón del Vago.(1998).
Para Lemaitre, bastaría con hacer el recorrido hacia atrás, si imaginamos la expansión aumentando de radio, quiere decir que en algún momento su radio fue cero. Lemaitre afirmaba que las galaxias son fragmentos despedidos por la explosión de este núcleo, dando como resultado la expansión del Universo. Éste fue el comienzo de la teoría de la Gran Explosión sobre el origen del Universo.
 El destino del universo de Friedmann está determinado por la densidad media de la materia en el Universo. Si hay relativamente poca materia, la atracción gravitatoria mutua entre las galaxias disminuirá las velocidades de recesión sólo un poco y el Universo se expandirá indefinidamente. Esto dará como resultado un llamado `"universo abierto", infinito en extensión. Sin embargo, si la densidad de la materia está por encima de un valor crítico estimado actualmente en mucho menos de un gramo, la expansión descenderá hasta detenerse y llegar a la contracción, finalizando en el colapso gravitatorio total del Universo entero. Éste sería un "universo cerrado", finito en extensión. El destino de este universo colapsado es incierto, pero hay una teoría según la cual explotaría de nuevo, originando un nuevo universo en expansión, que se volvería a colapsar, y así hasta el infinito. A este modelo se le llama universo oscilante o pulsante, Rincón del Vago. (1998).

La teoría del universo estacionario
Según Rincón del Vago.(1998).En 1948, los astrónomos británicos Hermann Bondi, Thomas Gold y Fred Hoyle presentaron un modelo completamente distinto de universo, conocido como la teoría del universo estacionario. Consideraban insatisfactoria, desde el punto de vista filosófico, la idea de un repentino comienzo del Universo. Su modelo se derivaba de una extensión del "principio cosmológico", que sostiene teorías anteriores como el modelo de Friedmann. En su forma previa, más restringida, el principio afirmaba que el Universo parece el mismo en su conjunto, en un momento determinado desde cualquier posición. El "principio cosmológico perfecto" de Bondi, Gold y Hoyle añade el postulado de que el Universo parece el mismo siempre. Plantean que la disminución de la densidad del  universo provocada por su expansión se compensa con la creación continua de materia, que se condensa en galaxias que ocupan el lugar de las galaxias que se han separado de la Vía Láctea y así se mantiene la apariencia actual del Universo, es la teoría de creación continua. La teoría del universo estacionario, al menos en esta forma, no la aceptan la mayoría de los cosmólogos, en especial después del descubrimiento aparentemente incompatible de la radiación de fondo de microondas en 1965.
El descubrimiento de quásares también aportó pruebas que contradicen la teoría del universo estacionario.


La teoría del Big Bang o de la Gran Explosión



El Big Bang o gran estallido según Xtec. (nd), constituye el momento en que de la "nada" emerge toda la materia, es decir, el origen del Universo. La materia, hasta ese momento, es un punto de densidad infinita, que en un momento dado "explota" generando la expansión de la materia en todas las direcciones y creando lo que se conoce como Universo.

Inmediatamente después del momento de la "explosión", cada partícula de materia comenzó a alejarse muy rápidamente una de otra, de la misma manera que al inflar un globo éste va ocupando más espacio expandiendo su superficie. Los físicos teóricos han logrado reconstruir esta cronología de los hechos a partir de un 1/100 de segundo después del Big Bang. La materia lanzada en todas las direcciones por la explosión primordial está constituida exclusivamente por partículas elementales: Electrones, Positrones, Mesones, Bariones, Neutrinos, Fotones y un largo etcétera hasta más de 89 partículas conocidas hoy en día.

En 1948 el Físico ruso nacionalizado estadounidense George Gamow modificó la teoría de Lemaître del núcleo primordial. Gamow planteó que el Universo se creó en una explosión gigantesca y que los diversos elementos que hoy se observan se produjeron durante los primeros minutos después de la Gran Explosión o Big Bang, cuando la temperatura extremadamente alta y la densidad del Universo fusionaron partículas subatómicas en los elementos químicos. Cálculos más recientes indican que el hidrógeno y el helio habrían sido los productos primarios del Big Bang, y los elementos más pesados se produjeron más tarde, dentro de las estrellas. Sin embargo, la teoría de Gamow proporciona una base para la comprensión de los primeros estadios del Universo y su posterior evolución. A causa de su elevadísima densidad, la materia existente en los primeros momentos del Universo se expandió con rapidez. Al expandirse, el helio y el hidrógeno se enfriaron y se condensaron en estrellas y en galaxias. Esto explica la expansión del Universo y la base física de la ley de Hubble.


Según se expandía el Universo, la radiación residual del Big Bang continuó enfriándose, hasta llegar a una temperatura de unos 3 K (-270 °C). Estos vestigios de radiación de fondo de microondas fueron detectados por los radioastrónomos en 1965, proporcionando así lo que la mayoría de los astrónomos consideran la confirmación de la teoría del Big Bang.

Uno de los problemas sin resolver en el modelo del Universo en expansión es si el Universo es abierto o cerrado (esto es, si se expandirá indefinidamente o se volverá a contraer).

  Un intento de resolver este problema es determinar si la densidad media de la materia en el Universo es mayor que el valor crítico en el modelo de Friedmann. La masa de una galaxia se puede medir observando el movimiento de sus estrellas; multiplicando la masa de cada galaxia por el número de galaxias se ve que la densidad es sólo del 5 al 10% del valor crítico. La masa de un cúmulo de galaxias se puede determinar de forma análoga, midiendo el movimiento de las galaxias que contiene. Al multiplicar esta masa por el número de cúmulos de galaxias se obtiene una densidad mucho mayor, que se aproxima al límite crítico que indicaría que el Universo está cerrado. La diferencia entre estos dos métodos sugiere la presencia de materia invisible, la llamada materia oscura, dentro de cada cúmulo pero fuera de las galaxias visibles. Hasta que se comprenda el fenómeno de la masa oculta, este método de determinar el destino del Universo será poco convincente.

Muchos de los trabajos habituales en cosmología teórica se centran en desarrollar una mejor comprensión de los procesos que deben haber dado lugar al Big Bang. La teoría inflacionaria, formulada en la década de 1980, resuelve dificultades importantes en el planteamiento original de Gamow al incorporar avances recientes en la física de las partículas elementales. Estas teorías también han conducido a especulaciones tan osadas como la posibilidad de una infinidad de universos producidos de acuerdo con el modelo inflacionario. Sin embargo, la mayoría de los cosmólogos se preocupa más de localizar el paradero de la materia oscura, mientras que una minoría, encabezada por el sueco Hannes Alfvén, premio Nobel de Física, mantienen la idea de que no sólo la gravedad sino también los fenómenos del plasma, tienen la clave para comprender la estructura y la evolución del Universo.




No hay comentarios:

Publicar un comentario